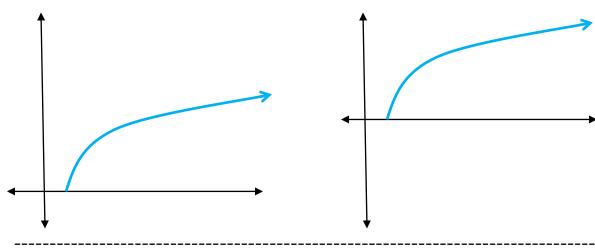

Name:

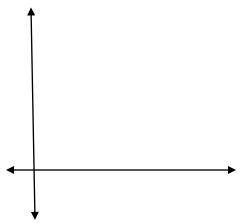

DISK METHOD

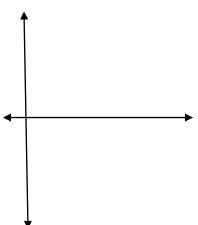
Example #1: Sketch the solid formed when the region: y = x+1, x = 0, x = 5, and y = 0 is rotated about the x-axis.

Example #2: Sketch the solid formed when the region: $y = \sqrt{x-1}$, x = 9, and y = 0 is rotated about the x-axis.

Volume = $\int_a^b \pi r^2 h$ r = f(x) h = dx (NOTE: x = a and x = b)

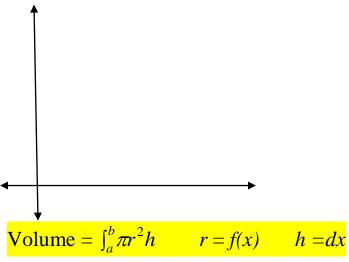
After substitution:

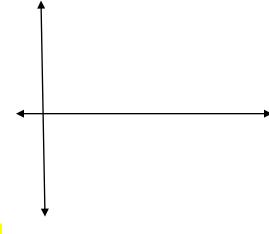

Volume = $\int_a^b \pi [f(x)]^2 dx$


 $(Ex \# 1) \tag{Ex. \#2}$

V = V = V

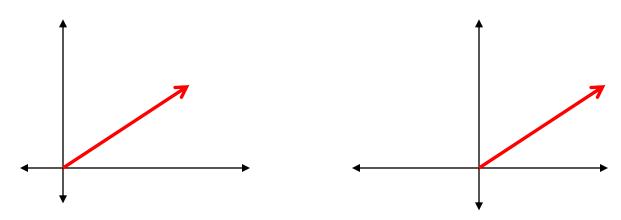
Examples:

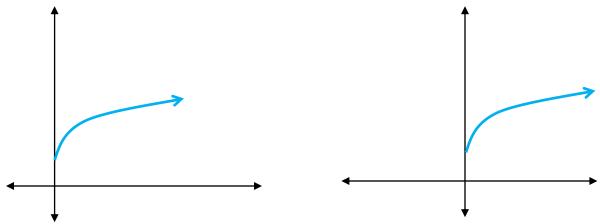

1. Find the volume of the solid when the area enclosed by: f(x) = 9 - 3x, x = 0, and y = 0 is rotated about the x-axis.



Volume = $\int_a^b \pi r^2 h$ r = f(x) h = dx

2. Find the volume of the solid formed when the area enclosed by: $g(x) = x^3 - 3x + 3$, x = 0, x = 3, and y = 0 is rotated about the x-axis.




Name: _____

DISK METHOD

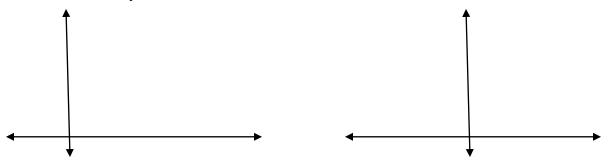
Example #1: Sketch the solid formed when the region: y = x, x = 0, y = 0, and y = 5 is rotated about the y-axis.

Example #2: Sketch the solid formed when the region: $y = \sqrt{x} + 1$, x = 0, and y = 4 is rotated about the y-axis.

Volume =
$$\int_a^b \pi r^2 h$$
 $r = f(y)$ $h = dy$ (NOTE: $y = a$ and $y = b$)

After substitution:

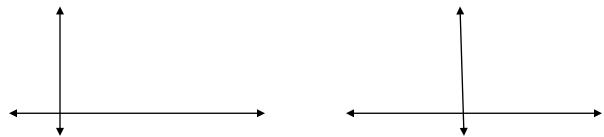
Volume =
$$\int_{a}^{b} \pi [f(y)]^{2} dy$$


*The radius is represented by the function in x= form (in terms of y).

$$(Ex \# 1) \tag{Ex. \#2}$$

$$V = V = V = V$$

Examples:


1. Find the volume of the solid formed when the area enclosed by: $y = x^3$, x = 0, y = 0, and y = 8 is rotated about the y-axis.

Volume = $\int_a^b \pi r^2 h$ f(y) = r dy = h

2. Find the volume of the solid formed when the area enclosed by: $x = y^2 + 3$, x = 0, y = 0, and y = 3 is rotated about the y-axis.

Volume = $\int_a^b \pi r^2 h$ f(y) = r dy = h